TY - GEN
T1 - Major-axis planning method for fabrication of high aspect ratio structure based on two-photon photopolymerization technology
AU - Liao, Chao Yaug
AU - Kao, Chien Min
AU - Chen, Po Kai
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - The smallest forming unit in two-photon photopolymerization (TPP) micro-manufacturing technology is the voxel, the appearance of which resembles a spheroid. Traditional TPP micro-manufacturing is planned using the minor-axis dimension of a spheroid, which is smaller than its major-axis, thus, the spatial resolution can achieve submicron level. TPP can be used to manufacture microstructures with complex shapes. However, such fine spatial resolution inevitably lowers the overall manufacturing speed. For a microstructure with a height of hundred micrometers, the prolonged manufacturing time substantially increases the risk of manufacturing failure. Whereas typical methods use the minor-axis dimension for manufacturing planning, this study developed a novel major-axis planning (MAP) method that uses the longest dimension of the voxel. In this study, the MAP was realized in a 4-axis micro-manufacturing system (i.e., a rotation axis was added to the 3-axis motion stage). Specifically, a specially designed L-type glass substrate was first placed on the rotation axis and was rotated 90°, rendering the working plane parallel to laser beams. Subsequently, horizontal laser scanning was performed, during which the laser focus moved from the working plane horizontally, to polymerize a high-aspect-ratio structure. The commercial polymer OrmoComp was used with the MAP; only 10 s was required to fabricate a microstructure that had a height of 100 μm and an aspect ratio of 17. This study verified that TPP micro-manufacturing on a voxel’s major axis can fabricate microstructures. Moreover, the L-type glass substrate can be controlled programmably to rotate an L-type glass substrate for 4-axis TPP micro-manufacturing in the future.
AB - The smallest forming unit in two-photon photopolymerization (TPP) micro-manufacturing technology is the voxel, the appearance of which resembles a spheroid. Traditional TPP micro-manufacturing is planned using the minor-axis dimension of a spheroid, which is smaller than its major-axis, thus, the spatial resolution can achieve submicron level. TPP can be used to manufacture microstructures with complex shapes. However, such fine spatial resolution inevitably lowers the overall manufacturing speed. For a microstructure with a height of hundred micrometers, the prolonged manufacturing time substantially increases the risk of manufacturing failure. Whereas typical methods use the minor-axis dimension for manufacturing planning, this study developed a novel major-axis planning (MAP) method that uses the longest dimension of the voxel. In this study, the MAP was realized in a 4-axis micro-manufacturing system (i.e., a rotation axis was added to the 3-axis motion stage). Specifically, a specially designed L-type glass substrate was first placed on the rotation axis and was rotated 90°, rendering the working plane parallel to laser beams. Subsequently, horizontal laser scanning was performed, during which the laser focus moved from the working plane horizontally, to polymerize a high-aspect-ratio structure. The commercial polymer OrmoComp was used with the MAP; only 10 s was required to fabricate a microstructure that had a height of 100 μm and an aspect ratio of 17. This study verified that TPP micro-manufacturing on a voxel’s major axis can fabricate microstructures. Moreover, the L-type glass substrate can be controlled programmably to rotate an L-type glass substrate for 4-axis TPP micro-manufacturing in the future.
UR - http://www.scopus.com/inward/record.url?scp=85056822362&partnerID=8YFLogxK
U2 - 10.1115/DETC2018-85007
DO - 10.1115/DETC2018-85007
M3 - 會議論文篇章
AN - SCOPUS:85056822362
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Y2 - 26 August 2018 through 29 August 2018
ER -