Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline

Hsing Wen Lin, Ying Tung Chen, Jen Hung Wang, Shiang Yu Wang, Fumi Yoshida, Wing Huen Ip, Satoshi Miyazaki, Tsuyoshi Terai

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Machine-learning techniques are widely applied in many modern optical sky surveys, e.g., Pan-STARRS1, PTF/iPTF, and the Subaru/Hyper Suprime-Cam survey, to reduce human intervention in data verification. In this study, we have established a machine-learningbased real-bogus system to reject false detections in the Subaru/Hyper-Suprime-Cam Strategic Survey Program (HSC-SSP) source catalog. Therefore, the HSC-SSP moving object detection pipeline can operate more effectively due to the reduction of false positives. To train the real-bogus system, we use stationary sources as the real training set and "flagged" data as the bogus set. The training set contains 47 features, most of which are photometric measurements and shape moments generated from the HSC image reduction pipeline (hscPipe). Our system can reach a true positive rate (tpr) ∼96% with a false positive rate (fpr) ∼1% or tpr ∼99% at fpr ∼5%. Therefore, we conclude that stationary sources are decent real training samples, and using photometry measurements and shape moments can reject false positives effectively.

Original languageEnglish
Article numberS39
JournalPublications of the Astronomical Society of Japan
Issue numberSpecial Issue 1
StatePublished - Jan 2018


  • Kuiper belt: general
  • Methods: data analysis
  • Surveys


Dive into the research topics of 'Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline'. Together they form a unique fingerprint.

Cite this