Locality-preserving complex-valued Gaussian process latent variable model for robust face recognition

Sih Huei Chen, Yuan Shan Lee, Yu Sheng Hsu, Chung Hsien Wu, Jia Ching Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Learning a low-dimensional image representation yields effective and efficient face recognition. The use of such a representation helps to weaken the curse of dimensionality. However, the traditional facial representation method is not robust against partial occlusions or variations of expression. To solve this problem, this paper proposes a more reliable, complex-valued representation of facial image. The robust representation is based on the proposed locality-preserving complex-valued Gaussian process latent variable model (LP-CGPLVM). In the LP-CGPLVM, the Euler formula is utilized to transform original facial images into the complex domain. A proper complex GP is employed to model the mapping between the complex-valued high-dimensional data and the corresponding low-dimensional representation. Moreover, the locality-preserving constraint is taken into consideration to preserve the neighborhood data structure. The experimental results indicate that our proposed method is robust against partial occlusions and various facial expressions.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2696-2700
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - 10 Sep 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Conference

Conference2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period15/04/1820/04/18

Keywords

  • Complex-valued representation
  • Gaussian process latent variable model
  • Occlusion
  • Robust face recognition

Fingerprint

Dive into the research topics of 'Locality-preserving complex-valued Gaussian process latent variable model for robust face recognition'. Together they form a unique fingerprint.

Cite this