Projects per year
Abstract
It is known that a propagating wave at a certain spatial point can be decomposed into plane waves propagating at different angles. In this work, by designing a gradient index phononic crystal lens (GRIN PCL) with transverse-continuous leaf-like unit cells, we theoretically and experimentally show that the spatial-domain propagating waves in finite periodic structures can be linked to their time-domain vibration behaviors. The full-field instantaneous focusing behaviors of Lamb waves in the proposed leaf-like GRIN PCL give an example of the wave-vibration linkage in finite periodic structures while allowing a certain complexity. The conclusion in this paper can help one skip iterative time-consuming finite element analysis (e.g., time-stepping solutions) to avoid possible numerical instabilities occurred in calculating transient wave field on practical finite metamaterials or phononic crystals having unit cells with complicated configurations.
Original language | English |
---|---|
Article number | 1490 |
Journal | Crystals |
Volume | 11 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2021 |
Keywords
- Gradient-index lens
- Lamb waves
- Phononic crystals
- Vibration
Fingerprint
Dive into the research topics of 'Linking time-domain vibration behaviors to spatial-domain propagating waves in a leaf-like gradient-index phononic crystal lens'. Together they form a unique fingerprint.Projects
- 1 Finished