Projects per year
Abstract
Many deep-learning-based seizure detection algorithms have achieved good classification, which usually outperformed traditional machine-learning-based algorithms. However, the hand-engineered features increase the computational complexity and potentially have an ineffectiveness problem for the category. Therefore, this paper proposes a novel end-to-end deep-learning model comprising an inception module and a residual module to analyze the multi-scales of original EEG signals and realize seizure detection without feature extraction. Experiments were conducted and evaluated on the Bonn dataset and the CHB-MIT dataset. In the subject-dependent experiments, our model achieved an average F1-score of 69.34% on the CHB-MIT dataset. In subject-independent experiments, our method achieved an average accuracy of 99.04% on the Bonn dataset and an average F1-score of 37.31% on the CHB-MIT dataset. A series of analyses confirmed that our proposed model has better classification performance and lower computational complexity than existing end-to-end seizure detection models.
Original language | English |
---|---|
Pages (from-to) | 49172-49182 |
Number of pages | 11 |
Journal | IEEE Access |
Volume | 11 |
DOIs | |
State | Published - 2023 |
Keywords
- Convolutional neural networks
- electroencephalography
- end-to-end model
- epilepsy
- seizure detection
Fingerprint
Dive into the research topics of 'Less Parameterization Inception-Based End to End CNN Model for EEG Seizure Detection'. Together they form a unique fingerprint.Projects
- 1 Finished