Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect

Erdembayalag Batsaikhan, Chi Hung Lee, Han Hsu, Chun Ming Wu, Jen Chih Peng, Ma Hsuan Ma, Sangaa Deleg, Wen Hsien Li

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Magnetic properties of fully oxygenated bare CuO nanoparticles have been investigated using magnetization, X-ray diffraction, neutron diffraction, and Raman scattering measurements. The Langevin field profile is clearly revealed in the isothermal magnetization of 8.8 nm CuO nanoparticle assembly even at 300 K, revealing a 172 times enhancement of the ferromagnetic responses over that of bulk CuO. Surface magnetization of 8.8 nm CuO reaches 18% of the core magnetization. The Cu spins in 8.8 nm CuO order below 400 K, which is 1.7 times higher than the 231 K observed in bulk CuO. A relatively simple magnetic structure that may be indexed using a modulation vector of (0.2, 0, 0.2) was found for the 8.8 nm CuO, but no magnetic incommensurability was observed in bulk CuO. The Cu spins in 8.8 nm CuO form spin density waves with length scales of 5 chemical unit cells long along the crystallographic a- and c-axis directions. Considerable amounts of electronic charge shift from around the Cu lattice sites toward the interconnecting regions of two neighboring Cu-Cu ions, resulting in a stronger ferromagnetic direct exchange interaction for the neighboring Cu spins in 8.8 nm CuO.

Original languageEnglish
Pages (from-to)3849-3856
Number of pages8
JournalACS Omega
Volume5
Issue number8
DOIs
StatePublished - 3 Mar 2020

Fingerprint

Dive into the research topics of 'Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect'. Together they form a unique fingerprint.

Cite this