TY - JOUR
T1 - L(2, 1)-labelings of subdivisions of graphs
AU - Chang, Fei Huang
AU - Chia, Ma Lian
AU - Kuo, David
AU - Liaw, Sheng Chyang
AU - Tsai, Meng Hsuan
N1 - Publisher Copyright:
© 2014 Elsevier B.V. All rights reserved.
PY - 2015/2/6
Y1 - 2015/2/6
N2 - Given a graph G and a function h from E(G) to double-struck N, the h-subdivision of G, denoted by G(h), is the graph obtained from G by replacing each edge uv in G with a path P : uxuv1xuv2 . . . xuvn-1 v, where n = h(uv). When h(e) = c is a constant for all e ∈ E(G), we use G(c) to replace G(h). Given a graph G, an L(2, 1)-labeling of G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| ≥ 2 if dG(x, y) = 1, and |f(x) - f(y)| ≥ 1 if dG(x, y) = 2. A k-L(2, 1)-labeling is an L(2, 1)-labeling such that no label is greater than k. The L(2, 1)-labeling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2, 1)-labeling. We study the L(2, 1)-labeling numbers of subdivisions of graphs in this paper. We prove that λ(G(3)) = Δ(G) + 1 for any graph G with Δ(G) ≥ 4, and show that λ(G(h)) = Δ(G) + 1 if Δ(G) ≥ 5 and h is a function from E(G) to double-struck N so that h(e) ≥ 3 for all e ∈ E(G), or if Δ(G) ≥ 4 and h is a function from E(G) to double-struck N so that h(e) ≥ 4 for all e ∈ E(G).
AB - Given a graph G and a function h from E(G) to double-struck N, the h-subdivision of G, denoted by G(h), is the graph obtained from G by replacing each edge uv in G with a path P : uxuv1xuv2 . . . xuvn-1 v, where n = h(uv). When h(e) = c is a constant for all e ∈ E(G), we use G(c) to replace G(h). Given a graph G, an L(2, 1)-labeling of G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| ≥ 2 if dG(x, y) = 1, and |f(x) - f(y)| ≥ 1 if dG(x, y) = 2. A k-L(2, 1)-labeling is an L(2, 1)-labeling such that no label is greater than k. The L(2, 1)-labeling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2, 1)-labeling. We study the L(2, 1)-labeling numbers of subdivisions of graphs in this paper. We prove that λ(G(3)) = Δ(G) + 1 for any graph G with Δ(G) ≥ 4, and show that λ(G(h)) = Δ(G) + 1 if Δ(G) ≥ 5 and h is a function from E(G) to double-struck N so that h(e) ≥ 3 for all e ∈ E(G), or if Δ(G) ≥ 4 and h is a function from E(G) to double-struck N so that h(e) ≥ 4 for all e ∈ E(G).
KW - (2, 1)-total labeling
KW - L(2, 1)-labeling
KW - Subdivision
UR - http://www.scopus.com/inward/record.url?scp=84908542053&partnerID=8YFLogxK
U2 - 10.1016/j.disc.2014.09.006
DO - 10.1016/j.disc.2014.09.006
M3 - 期刊論文
AN - SCOPUS:84908542053
SN - 0012-365X
VL - 338
SP - 248
EP - 255
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 2
ER -