Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic-Assisted Craniotomy

Terence Essomba, Yang Hsu, Juan Sebastian Sandoval Arevalo, Med Amine Laribi, Said Zeghloul

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The craniotomy is a surgical task that is required to allow access to the patient’s brain. It consists of using neurosurgical drills to open a path through the skull. The high risk resulting from human dexterous limit justifies the use of an accurate robotic system to perform craniotomy. The present work introduces the kinematic design of a mechanism for a robotic manipulator dedicated to craniotomy. Motion capture experiments have been carried out to measure the motion of a surgical drill during the execution of craniotomy on human cadavers. The results of the experiments are discussed. As this medical application requires a remote center of motion (RCM), a new type of 3-RRR spherical parallel mechanism (SPM) is proposed to manipulate the surgical drill. The novelty of this mechanism is the integration of a reconfigurable base that re-orients the first revolute joint of the RRR legs. A mechanical architecture concept is introduced to implement this reconfiguration. It is made of three pantographic linkages that manipulate the base of the SPM. The kinematics of the new mechanism is analyzed. The influence of this reconfigurable parameter is studied on two different aspects: the mechanism workspace and kinematic performances. Based on these kinematic data, the optimization of a mechanism is performed. The drill motion trajectories are used to evaluate the behavior of the optimized mechanism. It is finally compared to the classical SPM with a trihedral base, showing the contribution of the new reconfiguration variable on the mechanism dexterity.

Original languageEnglish
Article number060905
JournalJournal of Mechanisms and Robotics
Volume11
Issue number6
DOIs
StatePublished - Dec 2019

Keywords

  • craniotomy
  • kinematic performances
  • mechanism design
  • mechanism synthesis
  • medical robotics
  • motion capture experiments
  • optimization
  • parallel platforms
  • reconfigurable mechanism
  • spherical parallel mechanism

Fingerprint

Dive into the research topics of 'Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic-Assisted Craniotomy'. Together they form a unique fingerprint.

Cite this