Kernel fukunaga-koontz transform subspaces for enhanced face recognition

Yung Hui Li, Marios Savvides

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

Traditional linear Fukunaga-Koontz Transform (FKT) [1] is a powerful discriminative subspaces building approach. Previous work has successfully extended FKT to be able to deal with small-sample-size. In this paper, we extend traditional linear FKT to enable it to work in multi-class problem and also in higher dimensional (kernel) subspaces and therefore provide enhanced discrimination ability. We verify the effectiveness of the proposed Kernel Fukunaga-Koontz Transform by demonstrating its effectiveness in face recognition applications; however the proposed non-linear generalization can be applied to any other domain specific problems.

Original languageEnglish
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - 2007
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: 17 Jun 200722 Jun 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Country/TerritoryUnited States
CityMinneapolis, MN
Period17/06/0722/06/07

Fingerprint

Dive into the research topics of 'Kernel fukunaga-koontz transform subspaces for enhanced face recognition'. Together they form a unique fingerprint.

Cite this