Is turbulent facilitated ignition through differential diffusion independent of spark gap?

Shenqyang Steven Shy, Minh Tien Nguyen, Shih Yao Huang, Chien Chia Liu

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


In 2014, Wu et al. discovered an unexpected result. Turbulence can facilitate ignition through differential diffusion when the effective Lewis number (Le) of mixtures is sufficiently larger than unity using small electrode gaps (dgap ≤ 0.8 mm) in near-isotropic turbulence generated by a fan-stirred burner. This suggested that the required minimum ignition energy (MIE) in intense turbulence can be smaller than that in quiescence (Wu et al. did not measure MIE). This work explores whether the aforesaid turbulent facilitated ignition (TFI) for Le > 1 is independent of dgap. We apply the same hydrogen mixtures at the equivalence ratio ϕ = 5.1 (Le ≈ 2.3) and ϕ = 0.18 (Le ≈ 0.3) as Wu et al. in our large fan-stirred cruciform bomb capable of generating near-isotropic turbulence to measure values of MIE as a function of dgap at both quiescence and intense turbulence (the rms turbulent fluctuating velocity u′ = 5.4 m/s) conditions. A drastic fall of values of laminar and turbulent MIE (MIEL and MIET) with increasing dgap is observed. TFI only occurs for Le > 1 (ϕ = 5.1) and it is restricted at smaller dgap = 0.58 mm, where MIEL = 61.5 mJ >> MIET = 26 mJ (0.25-mm tungsten electrodes) and MIEL = 255.5 mJ >> MIET = 36.8 mJ (2-mm tungsten electrodes) in support of Wu et al.’s finding. However, we discover that the MIEL and MIET curves versus dgap can cross each other at larger dgap, at which no TFI for Le > 1 at dgap = 2 mm where MIEL = 0.52 mJ << MIET = 17.3 mJ (2-mm tungsten electrodes). This interesting result depending on dgap should be disseminated in our combustion community for stimulating further research.

Original languageEnglish
Pages (from-to)1-3
Number of pages3
JournalCombustion and Flame
StatePublished - 2017


Dive into the research topics of 'Is turbulent facilitated ignition through differential diffusion independent of spark gap?'. Together they form a unique fingerprint.

Cite this