Insights into seismogenic deformation during the 2018 Hualien, Taiwan, earthquake sequence from InSAR, GPS, and modeling

Jiun Yee Yen, Chih Heng Lu, Rebecca J. Dorsey, Hao Kuo-Chen, Chung Pai Chang, Chun Chin Wang, Ray Y. Chuang, Yu Ting Kuo, Chi Yu Chiu, Yo Ho Chang, Fabio Bovenga, Wen Yen Chang

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

We provide new data and insights into a 6 February 2018 M w 6.4 earthquake that shook the city of Hualien in eastern Taiwan at the leading edge of a modern arc–continent collision. Fatalities and damages were concentrated near the Milun fault and extended south to the northern Longitudinal Valley fault. Although the Hualien area has one of the highest rates of seismicity in Taiwan, the geologic structures responsible for active deformation were not well understood before this event. We analyzed Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data and produced a 3D displacement model with InSAR and azimuth offset of radar images to document surface deformation induced by this earthquake. The 3D displacement model was inverted to estimate slip on the Milun fault. We find that models assuming a single fault are inconsistent with observations of coseismic deformation and regional strain patterns, providing evidence for linked slip on a little-studied offshore thrust belt. Based on data presented here and elsewhere, we propose a model for transpressive deformation in a zone of oblique convergence and left-lateral wrench tectonics to explain this and a prior 1951 M 7.3 earthquake.

Original languageEnglish
Pages (from-to)78-87
Number of pages10
JournalSeismological Research Letters
Volume90
Issue number1
DOIs
StatePublished - 1 Feb 2019

Fingerprint

Dive into the research topics of 'Insights into seismogenic deformation during the 2018 Hualien, Taiwan, earthquake sequence from InSAR, GPS, and modeling'. Together they form a unique fingerprint.

Cite this