In-situ synchrotron SAXS and WAXS investigation on the deformation of single and coaxial electrospun P(VDF-TrFE)-based nanofibers

Yi Jen Huang, Yi Fan Chen, Po Han Hsiao, Tu Ngoc Lam, Wen Ching Ko, Mao Yuan Luo, Wei Tsung Chuang, Chun Jen Su, Jen Hao Chang, Cho Fan Chung, E. Wen Huang

Research output: Contribution to journalArticlepeer-review

Abstract

Coaxial core/shell electrospun nanofibers consisting of ferroelectric P(VDF-TrFE) and relaxor ferroelectric P(VDF-TrFE-CTFE) are tailor-made with hierarchical structures to modulate their mechanical properties with respect to their constituents. Compared with two single and the other coaxial membranes prepared in the research, the core/shell-TrFE/CTFE membrane shows a more prominent mechanical anisotropy between revolving direction (RD) and cross direction (CD) associated with improved resistance to tensile stress for the crystallite phase stability and good strength-ductility balance. This is due to the better degree of core/shell-TrFE-CTFE nanofiber alignment and the crystalline/amorphous ratio. The coupling between terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for phase stabilization, comparing the core/shell-TrFE/CTFE with the pristine terpolymer. Moreover, an impressive collective deformation mechanism of a two-length scale in the core/shell composite structure is found. We apply in-situ synchrotron X-ray to resolve the two-length scale simultaneously by using the small-angle X-ray scattering to characterize the nanofibers and the wide-angle X-ray diffraction to identify the phase transformations. Our findings may serve as guidelines for the fabrication of the electrospun nanofibers used as membranes-based electroactive polymers.

Original languageEnglish
Article number12669
JournalInternational Journal of Molecular Sciences
Volume22
Issue number23
DOIs
StatePublished - 1 Dec 2021

Keywords

  • Coaxial electrospun core/shell nanofibers
  • Collective mechanisms
  • Hierarchical structure
  • Tensile modulus
  • Wide-angle X-ray diffraction

Fingerprint

Dive into the research topics of 'In-situ synchrotron SAXS and WAXS investigation on the deformation of single and coaxial electrospun P(VDF-TrFE)-based nanofibers'. Together they form a unique fingerprint.

Cite this