In situ scanning tunneling microscopy of 5-(Dodecyloxy)-2-(5-(4-(pentyloxy) phenyl)-1H-pyrazol-3-yl)phenol adsorbed on Au(1 1 1) electrode

Sihzih Chen, Yayu Huang, Shuehlin Yau, Chun Jung Chen, Chung Kung Lai

Research output: Contribution to journalArticlepeer-review

Abstract

The devise and advance of scanning tunneling microscopy (STM) have yielded insights of molecular adsorption at well-ordered electrified interface. This study employed in situ STM in 0.1 M HClO4 to examine the effect of potential on the spatial arrangements of 5-(Dodecyloxy)-2-(5-(4-(octyloxy) phenyl)-1H-pyrazol-3-yl)phenol (1) and 5-(Dodecyloxy)-2-(5-(4-(pentyloxy)phenyl) -1H-pyrazol-3-yl)phenol (2) on Au(1 1 1) electrode. High-quality molecular resolution STM imaging was used to study the anchoring configurations of these LC molecules on gold electrode. Only between 0 and 0.5 V (vs. reversible hydrogen electrode) did ordered molecular adlattices were found, including a chained phase formed between 0.5 and 0.25 V, and a lamellar phase formed between 0.05 and 0.25 V. The origin of this potential effect can be traced to the charge state of the gold electrode. Molecular resolution STM imaging of these ordered structures yielded intermolecular spacing and contour of admolecule, from which the adsorption configurations of 1 and 2 were deduced. They were adsorbed mostly parallel to the Au(1 1 1) substrate between 0.25 and 0.5 V, but their pyrazole moieties could turn upright as the potential was lowered to E < 0.25 V. The alkoxy side chains of adsorbed 1 and 2 were clearly imaged, which supports the notion that alkoxy interacted with Au(1 1 1) electrode more favorably at E < 0.25 V. This is the first report on the potential dependent adsorption of alkoxy moiety at metal electrode. Also, molecules comprising the lamellar phase were preferentially aligned with their long molecular axis normal to the lamellas, which resembles the molecular arrangement of the smectic A or C phase of liquid crystal.

Original languageEnglish
Pages (from-to)6-11
Number of pages6
JournalJournal of Electroanalytical Chemistry
Volume665
DOIs
StatePublished - 15 Jan 2012

Keywords

  • In situ scanning tunneling microscopy
  • Lamellar structure
  • Liquid crystal molecule
  • Molecular adsorption
  • Single crystal Au(1 1 1) electrode

Fingerprint

Dive into the research topics of 'In situ scanning tunneling microscopy of 5-(Dodecyloxy)-2-(5-(4-(pentyloxy) phenyl)-1H-pyrazol-3-yl)phenol adsorbed on Au(1 1 1) electrode'. Together they form a unique fingerprint.

Cite this