Projects per year
Abstract
Quantifying proteins at ultra-low levels in high ionic-strength solutions by silicon nanowire field-effect transistor (SiNWFET) immunosensors is critically hindered due to the limited Debye length, charge distributions and uncontrollable orientations of protein molecules on the NW surfaces. In this study, we propose a novel strategy to overcome this issue by employing aptamer as bio-amplifier for different types of SiNWFET immunosensors to quantify Amyloid Beta (Aβ) 1-42, a biomarker for early-stage diagnosis of Alzheimer disease (AD) with ultra-low level in human serum (HS), as a representative target. Our method, presented for the first time, exhibits an outstanding performance in combination with mSAM-SiNWFET immunosensors (designed by integrating SiNWFET as transducer, mouse antibody as bio-receptor, and mixed self-assembled monolayers (mSAMs) for biofouling resistance) to sense Aβ 1-42 down to 100 fg/mL in HS, the lowest level achieved in comparison with the most advanced sensing technologies for Aβ 1-42. The empirical data also reveal that varied concentrations of Aβ 1-42 in diverse high ionic-strength environments (150 mM BTP and HS) express good linear relationship with signal amplified by aptamer. This novel approach is therefore potentially applied for early-stage diagnosis of AD and other clinical trials of biomarkers with ultra-low content in blood.
Original language | English |
---|---|
Article number | 129150 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 329 |
DOIs | |
State | Published - 15 Feb 2021 |
Keywords
- Alzheimer disease
- Amyloid beta 1-42
- Aptamer
- Mixed self-assembled monolayer
- Signal enhancement
- Silicon nanowire field-effect transistor immunosensor
Fingerprint
Dive into the research topics of 'Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Developments of 3d Paper Based Nucelic Acid Extraction Kit for Point-Of-Care Liquid Biopsy(2/3)
Chen, W.-Y. (PI)
1/08/20 → 31/07/21
Project: Research