Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects

Yi Ting Cheng, Hsin Yu Chang, Heng Kwong Tsao, Yu Jane Sheng

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Geometric and chemical defects are frequently found or created on smooth graphene for applications of nanofluidics. In this work, imbibition dynamics and steady flows of water in graphene nanochannels with sparse defects are explored by molecular dynamics. The water contact angle is raised slightly by geometric defects (hole and protrusion) but lowered significantly by chemical defects (hydroxyl and epoxide groups). In steady flows, the mean velocity and slip length are always reduced by sparse defects and the effect of chemical defects is more significant than that of geometric defects. Moreover, it is interesting to find that the velocity profile is plug-like for geometric defects but becomes parabolic for chemical defects, regardless of the slip length. Sparse defects on graphene nanoslits also affect the imbibition dynamics remarkably, which generally follows Washburn's equation with the slip length. For chemical defects, surface friction (slip length) dominates over the driving force associated with surface wettability (contact angle). Nonetheless, for protrusion defects, the stick-slip behavior caused by contact line pinning and thermal fluctuations can be observed. Our new and novel findings indicate that the defect nature is crucial in nanoscale flows and imbibition processes, which the conventional hydrodynamic theory fails to depict.

Original languageEnglish
Article number112003
JournalPhysics of Fluids
Volume34
Issue number11
DOIs
StatePublished - 1 Nov 2022

Fingerprint

Dive into the research topics of 'Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects'. Together they form a unique fingerprint.

Cite this