Image Representation Using Supervised and Unsupervised Learning Methods on Complex Domain

Manh Quan Bui, Viet Hang Duong, Yung Hui Li, Tzu Chiang Tai, Jia Ching Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Matrix factorization (MF) and its extensions have been intensively studied in computer vision and machine learning. In this paper, unsupervised and supervised learning methods based on MF technique on complex domain are introduced. Projective complex matrix factorization (PCMF) and discriminant projective complex matrix factorization (DPCMF) present two frameworks of projecting complex data to a lower dimension space. The optimization problems are formulated as the minimization of the real-valued functions of complex variables. Motivated by independence among extracted features, Fisher linear discriminant is used as hard constraint on supervised model. Experimental results on facial expression recognition (FER) show improved classification performance in comparison to real-valued features of both unsupervised and supervised NMFs.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1248-1252
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - 10 Sep 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Conference

Conference2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period15/04/1820/04/18

Keywords

  • Complex matrix factorization
  • Discriminant feature
  • Image representation
  • LDA
  • NMF

Fingerprint

Dive into the research topics of 'Image Representation Using Supervised and Unsupervised Learning Methods on Complex Domain'. Together they form a unique fingerprint.

Cite this