Abstract
The hot deformation behavior of as-cast AZ61/SiC composites during uniaxial compression test at temperatures ranging from 280 to 440 ℃ and a strain rate of 0.001–1 s−1 was investigated. There was an increase in the flow stress of the composites with a decrease int the temperature and increase in the strain rate. Processing maps were developed based on the dynamic material model (DMM) at a maximum strain of 1.2. The effects of the incorporation of silicon carbide (SiC) particles into the base alloy are discussed. The findings show that the incorporation of SiC particles into the base alloy effectively enhanced its workability in the low temperature domain. The SiC particles promoted the generation and reduced the mobility of dislocations, effectively meeting the energy requirements for dynamic recrystallization (DRX) needed to improve low temperature workability. The optimal processing workability conditions for a AZ61/SiC composite with a higher dissipation efficiency of (PDE) of 39.5% were determined to be 440⁰C/0.001 s−1. The instability domain did not exist in the composite because the material could be deformed without micro cracks or flow visualization. The activation energy was calculated to be 131.5 kJ/mol using a constructive model of the composite.
Original language | English |
---|---|
Article number | 102861 |
Journal | Materials Today Communications |
Volume | 29 |
DOIs | |
State | Published - Dec 2021 |
Keywords
- AZ61/SiC composites
- flow behavior
- hot deformation
- processing map