Abstract
1.5-μm AlN grown by metal-organic chemical vapor deposition (MOCVD), with a single substrate temperature of 1180 °C, exhibits atomically flat surface and the XRD (102) peak width of 427 arcsec. The results are achieved with a pulsed NH3-flow condition, serving as an alternative for the commonly used temperature-varied buffer structure, which is often complicated and time-consuming. Inserting two pulsed-NH3-flow AlN layers in the epitaxial structure not only releases the lattice strain via the formation of three-dimensional nano-islands, but also smoothens the surface with prolonged lateral migration of Al adatoms. This effective growth technique substantially simplifies the manufacture of device-quality AlN.
Original language | English |
---|---|
Article number | 7135 |
Journal | Scientific Reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2017 |