High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication

Zuhaib Khan, Yung Hao Chang, Te Lieh Pan, Yaung Cheng Zhao, Yen Yu Huang, Chia Hung Lee, Jui Sheng Chang, Cheng Yi Liu, Cheng Yuan Lee, Chao Yi Fang, Jin Wei Shi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The development of high-speed and high-brightness vertical-cavity surface-emitting lasers (VCSELs), which can serve as an efficient light source for optical wireless communication (OWC), play a crucial role in growth of the next generation of wireless communication networks, e.g., 6 G and satellite communications. In this work, by optimizing the size of the Zn-diffusion and oxide-relief apertures in a high-speed 850 nm VCSEL, we obtain record-high brightness (2.9 MWcm-2sr-1 at 10 mW output) with single polarized and (quasi-) single-mode (SM) outputs under continuous wave (CW) operation. However, such high brightness output comes at the cost of spatial hole burning (SHB) effect and degraded quality of 25 Gbit/sec eye patterns. In addition, an SM VSCEL array structure is usually needed to further boost the total available optical power for long-reach OWC. Here, a novel (quasi-) SM VCSEL array structure is demonstrated which releases the trade-off between the performances of brightness and eye-pattern quality. Our demonstrated array has a special crisscross mesa connecting neighboring VCSEL units and an extra electroplated copper substrate integrated on the backside of the chip. Compared to the reference array without the copper substrate and connected active mesas, the demonstrated array exhibits a higher (quasi-) SM output power, narrower divergence angle, larger orthogonal polarization mode suppression ratio (OPSR), and flatter E-O response. This in turn leads to smaller jitter and less noise in the measured 12.5 Gbit/sec eye-patterns. The demonstrated 7 × 7 array exhibits a maximum SM power of around 90 mW with a 1/e2 divergence angle as narrow as 7o (FWHM: 5o), single polarized output (10 dB OPSR), decent relative intensity noise performance (130 dB/Hz) and clear 12.5 Gbit/sec eye-opening. Such new device with remarkable static/dynamic performances has strong potential to further improve the product of the linking distance and data rate in the next generation of OWC channels.

Original languageEnglish
Pages (from-to)2303-2317
Number of pages15
JournalIEEE Access
Volume10
DOIs
StatePublished - 2022

Keywords

  • Brightness
  • High-speed optical techniques
  • Optical arrays
  • Optical polarization
  • Optical reflection
  • Optical waveguides
  • Vertical cavity surface emitting lasers

Fingerprint

Dive into the research topics of 'High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication'. Together they form a unique fingerprint.

Cite this