TY - JOUR
T1 - Hazard assessment of volcanic ballistic impacts at Mt Chihshin, Tatun Volcano Group, northern Taiwan
AU - Nurmawati, A.
AU - Konstantinou, K. I.
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media B.V., part of Springer Nature.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - This study investigates the hazard posed by Volcanic Ballistic Projectiles (VBPs) in the area surrounding Mt Chihshin, Tatun Volcano Group, northern Taiwan. Based on the volcano’s current evolutionary stage, we consider two types of volcanic activity during which VBPs can be generated, namely hydrothermal and vulcanian eruptions. Hydrothermal eruptions may occur after a sudden decompression of water in the hydrothermal system of the volcano, typically due to mass removal processes, while vulcanian eruptions are caused by solidified magma that plugs the eruptive vent and gets blasted when this caprock is no longer able to withstand the pressure in the volcanic conduit. Initial velocities of ejected VBPs were estimated for each type of activity based on physical models and inserted as initial conditions to the equations that describe their motion. A hydrothermal eruption is assumed to occur at the NW flank of Mt Chihshin near the Hsiaoyiokeng fumarole, which is a place prone to flank instability, while a vulcanian eruption is assumed to originate from a central vent at the peak of Mt Chihshin. Modeling results suggest that the radii of the areas impacted by VBPs vary between 0.1 and 1.1 km for a hydrothermal eruption, while they become 1.4–5.1 km for a vulcanian eruption. Within these areas, roads, hiking trails, and public buildings lie within the impact areas; therefore, VBPs may potentially cause damage, injury, and even casualties.
AB - This study investigates the hazard posed by Volcanic Ballistic Projectiles (VBPs) in the area surrounding Mt Chihshin, Tatun Volcano Group, northern Taiwan. Based on the volcano’s current evolutionary stage, we consider two types of volcanic activity during which VBPs can be generated, namely hydrothermal and vulcanian eruptions. Hydrothermal eruptions may occur after a sudden decompression of water in the hydrothermal system of the volcano, typically due to mass removal processes, while vulcanian eruptions are caused by solidified magma that plugs the eruptive vent and gets blasted when this caprock is no longer able to withstand the pressure in the volcanic conduit. Initial velocities of ejected VBPs were estimated for each type of activity based on physical models and inserted as initial conditions to the equations that describe their motion. A hydrothermal eruption is assumed to occur at the NW flank of Mt Chihshin near the Hsiaoyiokeng fumarole, which is a place prone to flank instability, while a vulcanian eruption is assumed to originate from a central vent at the peak of Mt Chihshin. Modeling results suggest that the radii of the areas impacted by VBPs vary between 0.1 and 1.1 km for a hydrothermal eruption, while they become 1.4–5.1 km for a vulcanian eruption. Within these areas, roads, hiking trails, and public buildings lie within the impact areas; therefore, VBPs may potentially cause damage, injury, and even casualties.
KW - Eruption
KW - Taiwan
KW - Tatun
KW - Volcanic ballistic projectiles
KW - Volcanic hazard
UR - http://www.scopus.com/inward/record.url?scp=85045240844&partnerID=8YFLogxK
U2 - 10.1007/s11069-018-3192-4
DO - 10.1007/s11069-018-3192-4
M3 - 期刊論文
AN - SCOPUS:85045240844
SN - 0921-030X
VL - 92
SP - 77
EP - 92
JO - Natural Hazards
JF - Natural Hazards
IS - 1
ER -