TY - JOUR
T1 - Gravitational wave memory in dS4+2n and 4D cosmology
AU - Chu, Y. Z.
N1 - Publisher Copyright:
© 2017 IOP Publishing Ltd Printed in the UK.
PY - 2017/2/9
Y1 - 2017/2/9
N2 - We argue that massless gravitons in all even dimensional de Sitter (dS) spacetimes higher than two admit a linear memory effect arising from their propagation inside the null cone. Assume that gravitational waves (GWs) are being generated by an isolated source, and over only a finite period of time ηi≤η≤ηf. Outside of this time interval, suppose the shear-stress of the GW source becomes negligible relative to its energy-momentum and its mass quadrupole moments settle to static values. We then demonstrate, the transverse-traceless (TT) GW contribution to the perturbation of any dS4+2n written in a conformally flat form (a2ηϵμ dxϵ dxμ)-after the source has ceased and the primary GW train has passedamounts to a spacetime constant shift in the flat metric proportional to the difference between the TT parts of the sources final and initial mass quadrupole moments. As a byproduct, we present solutions to Einsteins equations linearized about de Sitter backgrounds of all dimensions greater than three. We then point out there is a similar but approximate tail induced linear GW memory effect in 4D matter dominated universes. Our work here serves to improve upon and extend the 4D cosmological results of Chu (2015 Phys. Rev. D 92 124038), which in turn preceded complementary work by Bieri et al (2015 arXiv:1509.01296) and by Kehagias and Riotto (2016 arXiv:1602.02653).
AB - We argue that massless gravitons in all even dimensional de Sitter (dS) spacetimes higher than two admit a linear memory effect arising from their propagation inside the null cone. Assume that gravitational waves (GWs) are being generated by an isolated source, and over only a finite period of time ηi≤η≤ηf. Outside of this time interval, suppose the shear-stress of the GW source becomes negligible relative to its energy-momentum and its mass quadrupole moments settle to static values. We then demonstrate, the transverse-traceless (TT) GW contribution to the perturbation of any dS4+2n written in a conformally flat form (a2ηϵμ dxϵ dxμ)-after the source has ceased and the primary GW train has passedamounts to a spacetime constant shift in the flat metric proportional to the difference between the TT parts of the sources final and initial mass quadrupole moments. As a byproduct, we present solutions to Einsteins equations linearized about de Sitter backgrounds of all dimensions greater than three. We then point out there is a similar but approximate tail induced linear GW memory effect in 4D matter dominated universes. Our work here serves to improve upon and extend the 4D cosmological results of Chu (2015 Phys. Rev. D 92 124038), which in turn preceded complementary work by Bieri et al (2015 arXiv:1509.01296) and by Kehagias and Riotto (2016 arXiv:1602.02653).
KW - Greens functions
KW - cosmological
KW - de Sitter
KW - gravitational wave memory
UR - http://www.scopus.com/inward/record.url?scp=85010042417&partnerID=8YFLogxK
U2 - 10.1088/1361-6382/34/3/035009
DO - 10.1088/1361-6382/34/3/035009
M3 - 期刊論文
AN - SCOPUS:85010042417
SN - 0264-9381
VL - 34
JO - Classical and Quantum Gravity
JF - Classical and Quantum Gravity
IS - 3
M1 - 035009
ER -