Abstract
Gravity, and the puzzle regarding its energy, can be understood from a gauge theory perspective. Gravity, i.e., dynamical s-pacetime geometry, can be considered as a local gauge theory of the symmetry group of Minkowski spacetime: the Poincare group. The dynamical potentials of the Poincare gauge theory of gravity are the frame and the metric-compatible connection. The spacetime geometry has in general both curvature and torsion. Einstein's general relativity theory is a special case. Both local gauge freedom and energy are clarified via the Hamiltonian formulation. We have developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. A key feature is the necessity to choose on the boundary a non-dynamic reference. With a best matched reference one gets good quasi-local energy-momentum and angular momentum values.
Original language | English |
---|---|
Title of host publication | Memorial Volume for Yi-shi Duan |
Publisher | World Scientific Publishing Co. Pte Ltd |
Pages | 168-187 |
Number of pages | 20 |
ISBN (Electronic) | 9789813237278 |
ISBN (Print) | 9789813237261 |
State | Published - 5 Jan 2018 |