GNSS radio occultation profiles in the neutral atmosphere from inversion of excess phase data

Pawel Hordyniec, Cheng Yung Huang, Chian Yi Liu, Witold Rohm, Shu Ya Chen

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Long-term stability, global coverage and high resolution are characteristics that make the Global Navigation Satellite System (GNSS) radio occultation (RO) technique well-suitable to serve as anchor measurements for observing the Earth's atmosphere. The concept of occultation soundings utilizes a receiver placed on a low Earth orbit to measure the accumulated atmospheric contribution along the limb in terms of a phase delay. A high sampling rate allows to reconstruct profiles of geophysical parameters through an inversion process of occultation signals. However, such measurements require a careful processing in order to provide accurate retrievals in the neutral atmosphere. The following development describes specific aspects in radio occultation methodology implemented in the retrieval chain from phase data to profiles of dry pressure and dry temperature. Independent retrievals from near-real time measurements are compared with occultation products provided by official processing centers to demonstrate reliability of the solution. The region within the upper troposphere and lower stratosphere (UTLS) is particularly represented by a low uncertainty being within 0.5% (K). A comparison with radiosondes shows a significant contribution of a water vapor term in the lower troposphere that comes from the dry air assumption in occultation profiles of pressure and temperature. Radiosonde measurements reproduced to refractivity profiles show very high agreement with occultation soundings, which is generally below 5%. A superior accuracy of RO refractivity is observed in the upper troposphere, where retrievals are consistent with radiosondes to 1%.

Original languageEnglish
Pages (from-to)215-233
Number of pages19
JournalTerrestrial, Atmospheric and Oceanic Sciences
Issue number2
StatePublished - Apr 2019


  • Excess phase
  • GNSS
  • Occultation
  • Radiosonde
  • Refractivity
  • Troposphere


Dive into the research topics of 'GNSS radio occultation profiles in the neutral atmosphere from inversion of excess phase data'. Together they form a unique fingerprint.

Cite this