TY - JOUR
T1 - Fully Solution-Processed Low-Voltage Driven Transparent Oxide Thin Film Transistors
AU - Yang, Bo Xuan
AU - Chien, Yu Hsin Chang
AU - Chang, Ting
AU - Liao, Ching Han
AU - Liu, Cheng Yi
AU - Chiang, Anthony Shiaw Tseh
AU - Liu, Cheng Liang
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/12/19
Y1 - 2018/12/19
N2 - In this work, transparent ZnO thin-film transistors (TFTs) are fabricated on ITO glass substrate with only solution processes. The active ZnO channels are deposited by spray pyrolysis. The gate dielectric is a spin-coated high dielectric constant (k) titanium-silicon oxide (TSO) layer, while the source/drain (S/D) electrodes are patterned by two-step spray-printing of silver nanowire (AgNWs)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent conductive composite through a shadow mask. The composition and microstructural characteristics of the films, as well as their TFTs performance, are systematically studied as a function of the temperature. The introduction of TSO high k dielectric, with ultraviolet (UV)-assisted post-annealing, significantly improves the device performance and achieves a maximum electron mobility (µmax) value as high as 56.2 cm2 V−1 s−1 when measured with thermally-evaporated Al top electrode. For fully solution-processed transparent TFTs with low temperature fabricated AgNWs/PEDOT:PSS S/D electrodes, the µmax is calculated to be 9.1 cm2 V−1 s−1 operating at a relatively low voltage of <3 V. The TFTs also show hysteresis-free electrical characteristics and optical transparency of ≈80% in the visible region of the optical spectrum.
AB - In this work, transparent ZnO thin-film transistors (TFTs) are fabricated on ITO glass substrate with only solution processes. The active ZnO channels are deposited by spray pyrolysis. The gate dielectric is a spin-coated high dielectric constant (k) titanium-silicon oxide (TSO) layer, while the source/drain (S/D) electrodes are patterned by two-step spray-printing of silver nanowire (AgNWs)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent conductive composite through a shadow mask. The composition and microstructural characteristics of the films, as well as their TFTs performance, are systematically studied as a function of the temperature. The introduction of TSO high k dielectric, with ultraviolet (UV)-assisted post-annealing, significantly improves the device performance and achieves a maximum electron mobility (µmax) value as high as 56.2 cm2 V−1 s−1 when measured with thermally-evaporated Al top electrode. For fully solution-processed transparent TFTs with low temperature fabricated AgNWs/PEDOT:PSS S/D electrodes, the µmax is calculated to be 9.1 cm2 V−1 s−1 operating at a relatively low voltage of <3 V. The TFTs also show hysteresis-free electrical characteristics and optical transparency of ≈80% in the visible region of the optical spectrum.
KW - ZnO
KW - high dielectric constant
KW - solution-processing
KW - thin film transistors
KW - transparent
UR - http://www.scopus.com/inward/record.url?scp=85055863544&partnerID=8YFLogxK
U2 - 10.1002/pssa.201800192
DO - 10.1002/pssa.201800192
M3 - 期刊論文
AN - SCOPUS:85055863544
SN - 1862-6300
VL - 215
JO - Physica Status Solidi (A) Applications and Materials Science
JF - Physica Status Solidi (A) Applications and Materials Science
IS - 24
M1 - 1800192
ER -