Fully complex deep neural network for phase-incorporating monaural source separation

Yuan Shan Lee, Chien Yao Wang, Shu Fan Wang, Jia Ching Wang, Chung Hsien Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

Deep neural network (DNN) have become a popular means of separating a target source from a mixed signal. Most of DNN-based methods modify only the magnitude spectrum of the mixture. The phase spectrum is left unchanged, which is inherent in the short-time Fourier transform (STFT) coefficients of the input signal. However, recent studies have revealed that incorporating phase information can improve the quality of separated sources. To estimate simultaneously the magnitude and the phase of STFT coefficients, this work paper developed a fully complex-valued deep neural network (FCDNN) that learns the nonlinear mapping from complex-valued STFT coefficients of a mixture to sources. In addition, to reinforce the sparsity of the estimated spectra, a sparse penalty term is incorporated into the objective function of the FCDNN. Finally, the proposed method is applied to singing source separation. Experimental results indicate that the proposed method outperforms the state-of-the-art DNN-based methods.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages281-285
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - 16 Jun 2017
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Keywords

  • Deep neural network
  • phase information

Fingerprint

Dive into the research topics of 'Fully complex deep neural network for phase-incorporating monaural source separation'. Together they form a unique fingerprint.

Cite this