Full-loop study of a dual fluidized bed cold flow system: Hydrodynamic simulation and validation

Cong Binh Dinh, Shu San Hsiau, Chien Yuan Su, Meng Yuan Tsai, Yi Shun Chen, Huy Bich Nguyen, Hou Peng Wan

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The unsteady behaviors of the air-silica sand flow in a lab-scale dual fluidized bed gasification cold flow system have been studied. A two-dimensional computational fluid dynamics full-loop model with poly-size distribution in solid phases was developed as an innovation of this study to investigate the effects of crucial parameters on system hydrodynamics. The results showed a decrease in the mixture static pressure from the bottom to the upper regions of the system, which maintained the system operations stable. The riser air inlet velocity and the gasifier static bed height were found to play considerable roles in enhancing the total sand flow rates. The same tendencies in the prediction and experiment of both the mixture pressure and the sand flow rate showed the feasibility of the proposed model. Besides, the residual evaluation enhanced data reliability and supported model validation. Especially, undesirable phenomena possibly occurring in the system operation under improper conditions could also be predicted. Accordingly, the inventory of bed material and the fluidizing gas flow rates should be suitably regulated to maintain pressure balances, trouble-free continuous flow, optimal sand circulation rate, and low solids loss. Furthermore, the obtained results in this study can be used as a reference for optimizing the designs and operational conditions of large-scale plants.

Original languageEnglish
Pages (from-to)670-682
Number of pages13
JournalAdvanced Powder Technology
Volume32
Issue number3
DOIs
StatePublished - Mar 2021

Keywords

  • Cold flow system
  • Dual fluidized bed gasification
  • Full-loop model
  • Poly-size distribution
  • Sand circulation rate

Fingerprint

Dive into the research topics of 'Full-loop study of a dual fluidized bed cold flow system: Hydrodynamic simulation and validation'. Together they form a unique fingerprint.

Cite this