Abstract
In recent years the emerge of high-entropy alloys (HEAs) imposes an evolution in metallic materials, which breaks the boundaries set by the traditional alloys. Alongside the development of HEAs, the medium-entropy alloys (MEAs), which comprise two to four majority elements, also reveal the outperforming properties with less compositional complexity. Among them, the medium-entropy AlNbV alloys attract great attention owing to the existence of a body-centered cubic (BCC) solid solution that contains soluble Al, Nb, and V elements. Herein, we construct the phase diagrams for Al-Nb-V system and define the equilibrium homogeneity by thermally-equilibrated ternary alloys underwent a post-annealing at 1073 K or 1273 K. Meanwhile, a superposition of phase diagram and thermal conductivity κ mapping suggests that the coexistence of BCC solid solution and nano-grained AlNb2 brings down the κ. With the incorporation of Ti and Cr, the HEA AlNbVCrTi, which is composed of Laves C14 phase and BCC solid solution, achieves an ultralow κ of 6–10 Wm−1K−1 within 323–723 K.
Original language | English |
---|---|
Article number | 100889 |
Journal | Materialia |
Volume | 14 |
DOIs | |
State | Published - Dec 2020 |
Keywords
- AlNbV
- AlNbVCrTi
- High-entropy alloy
- Medium-entropy alloy
- Phase diagram
- Thermal conductivity