Forward coherent ϕ-meson photoproduction from deuterons near threshold

W. C. Chang, K. Horie, S. Shimizu, M. Miyabe, D. S. Ahn, J. K. Ahn, H. Akimune, Y. Asano, S. Daté, H. Ejiri, S. Fukui, H. Fujimura, M. Fujiwara, S. Hasegawa, K. Hicks, T. Hotta, K. Imai, T. Ishikawa, T. Iwata, Y. KatoH. Kawai, Z. Y. Kim, K. Kino, H. Kohri, N. Kumagai, P. J. Lin, S. Makino, T. Matsuda, T. Matsumura, N. Matsuoka, T. Mibe, Y. Miyachi, M. Morita, N. Muramatsu, T. Nakano, M. Niiyama, M. Nomachi, Y. Ohashi, H. Ohkuma, T. Ooba, D. S. Oshuev, C. Rangacharyulu, A. Sakaguchi, T. Sasaki, P. M. Shagin, Y. Shiino, A. Shimizu, H. Shimizu, Y. Sugaya, M. Sumihama, Y. Toi, H. Toyokawa, A. Wakai, C. W. Wang, S. C. Wang, K. Yonehara, T. Yorita, M. Yoshimura, M. Yosoi, R. G.T. Zegers

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Differential cross sections and decay asymmetries for coherent φ{symbol}-meson photoproduction from deuterons were measured for the first time at forward angles using linearly polarized photons at Eγ = 1.5 - 2.4   GeV. This reaction offers a unique way to directly access natural-parity pomeron dynamics and gluon exchange at low energies. The cross sections at zero degrees increase with increasing photon energy. The decay asymmetries demonstrate a complete dominance of natural-parity exchange processes, showing that isovector unnatural-parity π-meson exchange is small. Nevertheless the deduced cross sections of φ{symbol}-mesons from nucleons contributed by isoscalar t-channel exchange processes are not well described by the conventional pomeron model.

Original languageEnglish
Pages (from-to)209-215
Number of pages7
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume658
Issue number5
DOIs
StatePublished - 10 Jan 2008

Keywords

  • Coherent interaction
  • Deuterons
  • Photoproduction
  • φ{symbol}-mesons

Fingerprint

Dive into the research topics of 'Forward coherent ϕ-meson photoproduction from deuterons near threshold'. Together they form a unique fingerprint.

Cite this