TY - JOUR
T1 - First-principles study of intermediate-spin ferrous iron in the Earth's lower mantle
AU - Hsu, Han
AU - Wentzcovitch, Renata M.
N1 - Publisher Copyright:
© 2014 American Physical Society.
PY - 2014/11/18
Y1 - 2014/11/18
N2 - Spin crossover of iron is of central importance in solid Earth geophysics. It impacts all physical properties of minerals that altogether constitute ∼95 vol% of the Earth's lower mantle: ferropericlase [(Mg,Fe)O] and Fe-bearing magnesium silicate (MgSiO3) perovskite. Despite great strides made in the past decade, the existence of an intermediate-spin (IS) state in ferrous iron (Fe2+) (with total electron spin S=1) and its possible role in the pressure-induced spin crossover in these lower-mantle minerals still remain controversial. Using density functional theory + self-consistent Hubbard U (DFT+Usc) calculations, we investigate all possible types of IS states of Fe2+ in (Mg,Fe)O and (Mg,Fe)SiO3 perovskite. Among the possible IS states in these minerals, the most probable IS state has an electronic configuration that significantly reduces the electron overlap and the iron nuclear quadrupole splitting (QS). These most probable IS states, however, are still energetically disfavored, and their QSs are inconsistent with Mössbauer spectra. We therefore conclude that IS Fe2+ is highly unlikely in the Earth's lower mantle.
AB - Spin crossover of iron is of central importance in solid Earth geophysics. It impacts all physical properties of minerals that altogether constitute ∼95 vol% of the Earth's lower mantle: ferropericlase [(Mg,Fe)O] and Fe-bearing magnesium silicate (MgSiO3) perovskite. Despite great strides made in the past decade, the existence of an intermediate-spin (IS) state in ferrous iron (Fe2+) (with total electron spin S=1) and its possible role in the pressure-induced spin crossover in these lower-mantle minerals still remain controversial. Using density functional theory + self-consistent Hubbard U (DFT+Usc) calculations, we investigate all possible types of IS states of Fe2+ in (Mg,Fe)O and (Mg,Fe)SiO3 perovskite. Among the possible IS states in these minerals, the most probable IS state has an electronic configuration that significantly reduces the electron overlap and the iron nuclear quadrupole splitting (QS). These most probable IS states, however, are still energetically disfavored, and their QSs are inconsistent with Mössbauer spectra. We therefore conclude that IS Fe2+ is highly unlikely in the Earth's lower mantle.
UR - http://www.scopus.com/inward/record.url?scp=84911365223&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.90.195205
DO - 10.1103/PhysRevB.90.195205
M3 - 期刊論文
AN - SCOPUS:84911365223
SN - 1098-0121
VL - 90
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 19
M1 - 195205
ER -