Fault Slip and GPS Velocities Across the Shan Plateau Define a Curved Southwestward Crustal Motion Around the Eastern Himalayan Syntaxis

Xuhua Shi, Yu Wang, Kerry Sieh, Ray Weldon, Lujia Feng, Chung Han Chan, Jing Liu-Zeng

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of ~700 km followed by a decrease over the final ~100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is ~12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.

Original languageEnglish
Pages (from-to)2502-2518
Number of pages17
JournalJournal of Geophysical Research: Solid Earth
Volume123
Issue number3
DOIs
StatePublished - Mar 2018

Keywords

  • Global Positioning System (GPS)
  • Shan Plateau
  • crustal motion
  • distributed shear
  • eastern Himalayan syntaxis
  • slip rates

Fingerprint

Dive into the research topics of 'Fault Slip and GPS Velocities Across the Shan Plateau Define a Curved Southwestward Crustal Motion Around the Eastern Himalayan Syntaxis'. Together they form a unique fingerprint.

Cite this