Abstract
The selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) using the atomically dispersed supported copper catalyst is investigated. The hydrotalcite oxide supported copper materials (Cu(x)HTO) are facilely prepared by coprecipitating metal precursors in a methanolic solution under a tuned pH. The surface characterization involving PXRD, TEM, H2/N2O-TPR, and XAS reveals unequivocal evidence for the presence of the atomically dispersed copper on HTO surface. XAS specifically indicates the formation of mononuclear copper species, and H2/N2O-TPR strongly supports the copper atoms of Cu(5)HTO are evenly distributed in 99% dispersion. Moreover, the reduced Cu(5)HTO (r-Cu(5)HTO) enables to completely hydrogenate HMF to BHMF under mild conditions, in comparison to the poor reactivity catalyzed by the hydrotalcite oxide supported copper nanoparticles (r-Cu(4)@HTO). The dramatic enhancement of HMF hydrogenation catalyzed by r-Cu(5)HTO can be attributed to the fine distribution of copper atoms which are situated homogeneously over HTO surface as well as chemically reactive for the carbonyl group.
Original language | English |
---|---|
Article number | 122547 |
Journal | Applied Catalysis B: Environmental |
Volume | 329 |
DOIs | |
State | Published - 15 Jul 2023 |
Keywords
- 2
- 5-bis(hydroxymethyl)furan
- 5-hydroxymethylfurfural
- Atomically dispersed hydrotalcite oxide supported copper catalyst
- Selective hydrogenation