Abstract
Technical terms are vital elements for understanding the techniques used in academic research papers, and in this paper, we use focused technical terms to explore technical trends in the research literature. The major purpose of this work is to understand the relationship between techniques and research topics to better explore technical trends. We define this new text mining issue and apply machine learning algorithms for solving this problem by (1) recognizing focused technical terms from research papers; (2) classifying these terms into predefined technology categories; (3) analyzing the evolution of technical trends. The dataset consists of 656 papers collected from well-known conferences on ACM. The experimental results indicate that our proposed methods can effectively explore interesting evolutionary technical trends in various research topics.
Original language | English |
---|---|
Pages (from-to) | 97-117 |
Number of pages | 21 |
Journal | Journal of Information Science and Engineering |
Volume | 26 |
Issue number | 1 |
State | Published - Jan 2010 |
Keywords
- Information extraction
- Supervised machine learning
- Term classification
- Text mining
- Trends analysis