Enhanced RACH Occasion in LEO-Based Non-Terrestrial Networks

Yu Hsin Chuang, Pei Feng Lee, Sheng Shih Wang, Shiann Tsong Sheu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

With the latest development of the low earth orbit (LEO) constellation, satellite communication is considered in 3GPP as a promising NR-based non-terrestrial network (NTN) solution for extending 5G service to underserved areas. Due to the inherent characteristics of NTN, such as long propagation delay and high speed movement, some NR functions need to be redesigned or amended. This paper focuses on the random access procedure where the UEs may or may not have GNSS capability. To reuse legacy RACH Occasion (RO) scheme, a UE is assumed to have its location information for tracking the ephemeris of LEO satellite and compensating the propagation delay of slang range; otherwise, the new design of RO scheme is inevitable. This paper considers the mixed environment where a portion of UEs have GNSS-capability. Three different RO schemes, which are backward compatible with legacy RO scheme, are proposed to resolve the potential issues. Simulation results show that the proposed RO schemes outperform the legacy RO scheme in terms of the average delay and probability of successful preamble transmission regardless of the UE with or without GNSS capability.

Original languageEnglish
Title of host publicationICC 2023 - IEEE International Conference on Communications
Subtitle of host publicationSustainable Communications for Renaissance
EditorsMichele Zorzi, Meixia Tao, Walid Saad
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages283-289
Number of pages7
ISBN (Electronic)9781538674628
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Communications, ICC 2023 - Rome, Italy
Duration: 28 May 20231 Jun 2023

Publication series

NameIEEE International Conference on Communications
Volume2023-May
ISSN (Print)1550-3607

Conference

Conference2023 IEEE International Conference on Communications, ICC 2023
Country/TerritoryItaly
CityRome
Period28/05/231/06/23

Keywords

  • Global Navigation Satellite System (GNSS)
  • Low Earth Orbit (LEO)
  • Non-Terrestrial Networks (NTN)
  • RACH Occasion (RO)

Fingerprint

Dive into the research topics of 'Enhanced RACH Occasion in LEO-Based Non-Terrestrial Networks'. Together they form a unique fingerprint.

Cite this