Encoder-Recurrent Decoder Network for Single Image Dehazing

An Dang, Toan H. Vu, Jia Ching Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This paper develops a deep learning model, called Encoder-Recurrent Decoder Network (ERDN), which recovers the clear image from a degrade hazy image without using the atmospheric scattering model. The proposed model consists of two key components-an encoder and a decoder. The encoder is constructed by a residual efficient spatial pyramid (rESP) module such that it can effectively process hazy images at any resolution to extract relevant features at multiple contextual levels. The decoder has a recurrent module which sequentially aggregates encoded features from high levels to low levels to generate haze-free images. The network is trained end-to-end given pairs of hazy-clear images. Experimental results on the RESIDE-Standard dataset demonstrate that the proposed model achieves a competitive dehazing performance compared to the state-of-the-art methods in term of PSNR and SSIM.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4432-4436
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • ERDN
  • encoder-recurrent decoder network
  • single image dehazing

Fingerprint

Dive into the research topics of 'Encoder-Recurrent Decoder Network for Single Image Dehazing'. Together they form a unique fingerprint.

Cite this