Projects per year
Abstract
This paper develops a deep learning model, called Encoder-Recurrent Decoder Network (ERDN), which recovers the clear image from a degrade hazy image without using the atmospheric scattering model. The proposed model consists of two key components-an encoder and a decoder. The encoder is constructed by a residual efficient spatial pyramid (rESP) module such that it can effectively process hazy images at any resolution to extract relevant features at multiple contextual levels. The decoder has a recurrent module which sequentially aggregates encoded features from high levels to low levels to generate haze-free images. The network is trained end-to-end given pairs of hazy-clear images. Experimental results on the RESIDE-Standard dataset demonstrate that the proposed model achieves a competitive dehazing performance compared to the state-of-the-art methods in term of PSNR and SSIM.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4432-4436 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
State | Published - May 2020 |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: 4 May 2020 → 8 May 2020 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 4/05/20 → 8/05/20 |
Keywords
- ERDN
- encoder-recurrent decoder network
- single image dehazing
Fingerprint
Dive into the research topics of 'Encoder-Recurrent Decoder Network for Single Image Dehazing'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Deep Intelligence Based Spoken Language Processing( II )
Wang, J.-C. (PI)
1/01/19 → 31/12/19
Project: Research