Efficiently Predicting Vancomycin Resistance of Enterococcus Faecium From MALDI-TOF MS Spectra Using a Deep Learning-Based Approach

Hsin Yao Wang, Tsung Ting Hsieh, Chia Ru Chung, Hung Ching Chang, Jorng Tzong Horng, Jang Jih Lu, Jia Hsin Huang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has recently become a useful analytical approach for microbial identification. The presence and absence of specific peaks on MS spectra are commonly used to identify the bacterial species and predict antibiotic-resistant strains. However, the conventional approach using few single peaks would result in insufficient prediction power without using complete information of whole MS spectra. In the past few years, machine learning algorithms have been successfully applied to analyze the MALDI-TOF MS peaks pattern for rapid strain typing. In this study, we developed a convolutional neural network (CNN) method to deal with the complete information of MALDI-TOF MS spectra for detecting Enterococcus faecium, which is one of the leading pathogens in the world. We developed a CNN model to rapidly and accurately predict vancomycin-resistant Enterococcus faecium (VREfm) samples from the whole mass spectra profiles of clinical samples. The CNN models demonstrated good classification performances with the average area under the receiver operating characteristic curve (AUROC) of 0.887 when using external validation data independently. Additionally, we employed the score-class activation mapping (CAM) method to identify the important features of our CNN models and found some discriminative signals that can substantially contribute to detecting the ion of resistance. This study not only utilized the complete information of MALTI-TOF MS data directly but also provided a practical means for rapid detection of VREfm using a deep learning algorithm.

Original languageEnglish
Article number821233
JournalFrontiers in Microbiology
Volume13
DOIs
StatePublished - 6 Jun 2022

Keywords

  • antibacterial drug resistance
  • convolutional neural network (CNN)
  • MALDI-TOF MS
  • rapid detection
  • vancomycin-resistant Enterococcus faecium (VREfm)

Fingerprint

Dive into the research topics of 'Efficiently Predicting Vancomycin Resistance of Enterococcus Faecium From MALDI-TOF MS Spectra Using a Deep Learning-Based Approach'. Together they form a unique fingerprint.

Cite this