Effect of doppler radial velocity data assimilation on the simulation of a typhoon approaching Taiwan: A case study of typhoon aere (2004)

Hsin Hung Lin, Pay Liam Lin, Qingnong Xiao, Ying Hwa Kuo

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Compared to conventional data, radar observations have an advantage of high spatial and temporal resolutions, and Doppler radars are capable of capturing detailed characteristics of flow fields, including typhoon circulation. In this study, the possible improvement of short-term typhoon predictions near Taiwan, particularly with regard to related rainfall forecasts over the mountainous island, using Doppler radial wind observations is explored. The case of Typhoon Aere (2004) was chosen for study, and a series of experiments were carried out using the Penn State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model Version 5 (MM5) with its three-dimensional variational (3D-VAR) data assimilation system. The results show that once the Doppler radial velocities were assimilated into the model, the typhoon's circulation intensified within one hour. However, when Typhoon Aere approached from the east and only the western half of its core area could be observed by the radar, the assimilation caused the typhoon to deflect southward due to the incomplete and uneven data coverage. In another experiment in which Doppler radar data assimilation did not start until Typhoon Aere moved closer, such that its entire core region could be observed. A similar track deflection was avoided. Overall, the assimilation of Doppler radial velocity data reduced the intensity error (in wind speed) by about 25%. Furthermore, the improvements in location, intensity, and circulation structure of Typhoon Aere lead to better rainfall prediction over the island of Taiwan.

Original languageEnglish
Pages (from-to)325-345
Number of pages21
JournalTerrestrial, Atmospheric and Oceanic Sciences
Volume22
Issue number3
DOIs
StatePublished - Jun 2011

Keywords

  • 3D-VAR
  • Data assimilation
  • Doppler radial velocity

Fingerprint

Dive into the research topics of 'Effect of doppler radial velocity data assimilation on the simulation of a typhoon approaching Taiwan: A case study of typhoon aere (2004)'. Together they form a unique fingerprint.

Cite this