Dynamic circle recommendation: A probabilistic model

Fan Kai Chou, Meng Fen Chiang, Yi Cheng Chen, Wen Chih Peng

Research output: Contribution to journalConference articlepeer-review


This paper presents a novel framework for dynamic circle recommendation for a query user at a given time point from historical communication logs. We identify the fundamental factors that govern interactions and aim to automatically form dynamic circle for scenarios, such as, who should I dial to in the early morning? whose mail would I reply first at midnight? We develop a time-sensitive probabilistic model (TCircleRank) that not only captures temporal tendencies between the query user and candidate friends but also blends frequency and recency into group formation. We also utilize the model to support two types of dynamic circle recommendation: Seedset Generation: single-interaction suggestion and Circle Suggestion: multiple interactions suggestion. We further present approaches to infer relevant time interval in determining circles for a query user at a given time. Experimental results on Enron dataset, Call Detail Records and Reality Mining Data prove the effectiveness of dynamic circle recommendation using TCircleRank.

Original languageEnglish
Pages (from-to)25-37
Number of pages13
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8444 LNAI
Issue numberPART 2
StatePublished - 2014
Event18th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2014 - Tainan, Taiwan
Duration: 13 May 201416 May 2014


Dive into the research topics of 'Dynamic circle recommendation: A probabilistic model'. Together they form a unique fingerprint.

Cite this