Discotic Metallomesogens: Effects of Sidechains Density in Transition Metal Bis(β-Diketonate) Complexes

Pei Chen Fan, Chung K. Lai

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The preparation and mesogenic properties of a series of discotic β-diketonate metal complexes are reported. The results show that the density of side chains, positions of side chains, and the geometries of the metal centers play important roles in determining the mesomorphic behaviors and thermodynamic stability of these complexes. In the series of copper complexes 3, all these disc-like molecules with eight alkoxy side chains exhibit columnar hexagonal disordered (Dhd) mesophases. In the series of copper complexes 2 with six side chains, only compounds substituted with longer alkoxy chains (n = C14 or C16) exhibit discotic columnar mesophase. However, in the series of complexes 1, only crystal-to-isotropic transitions were observed. The results showed that induction of liquid crystallinity not only depends on the numbers of side chains (i.e. side chain density), but also on the degree of distribution over the central core. Palladium complexes analogs exhibit similar discotic mesophases, and due to their greater core-core organization, they also have higher clearing points and wider temperature range of mesophases than copper complexes.

Original languageEnglish
Pages (from-to)337-343
Number of pages7
JournalJournal of the Chinese Chemical Society
Volume43
Issue number4
DOIs
StatePublished - 1996

Keywords

  • Columnar superstructure
  • Discotic hexagonal phase
  • Metallomesogen
  • β-Diketonate

Fingerprint

Dive into the research topics of 'Discotic Metallomesogens: Effects of Sidechains Density in Transition Metal Bis(β-Diketonate) Complexes'. Together they form a unique fingerprint.

Cite this