TY - JOUR
T1 - Disclosing AlN ceramic substrate process failure mode and effect analysis
AU - Hung, Shiu Wan
AU - Chen, Ting Ko
N1 - Publisher Copyright:
© 2019
PY - 2019/12
Y1 - 2019/12
N2 - Due to the excellent thermal conductivity and physical and chemical characteristics of aluminium nitride (AlN) ceramic substrate, it can be useful for electronic applications. Furthermore, it is an ideal substrate material for the future. In this paper, we analyze and compare the traditional process of AlN ceramic substrate preparation methods (thin-film, thick-film, and direct bonded copper methods). The thin-film method requires precision instruments such as sputtering machines, but the equipment is expensive and the manufacturing cost is high. The direct bonded copper method requires a high temperature (approximately 1070 °C) to sinter the copper film onto the surface of the ceramic substrate. After this is finished, the conductive film must undergo some complicated process to obtain the products for both processes. Although the thick-film method is the easiest to undertake, it is limited in its process capability and cannot meet the development needs of the electronics industry in the future. Accordingly, this paper presents an investigation of the laser plated copper method to establish its advantages and disadvantages. This study compares traditional AlN metallisation with the laser radiation plated copper method, and discusses the application of three different methods, as follows: the selective chemical copper, selective electroless nickel, and electroless gold methods. These applications could achieve process simplification, precision design, easy production of three-dimensional extrusions, and green production processes. This research establishes and designs AlN metallisation using the failure mode and effect analysis (FMEA) model, by analysing possible causes and solutions in advance. The information herein obtained can be used as the reference for laser-enhanced AlN metallisation, to avoid potential problems and product damage during mass production.
AB - Due to the excellent thermal conductivity and physical and chemical characteristics of aluminium nitride (AlN) ceramic substrate, it can be useful for electronic applications. Furthermore, it is an ideal substrate material for the future. In this paper, we analyze and compare the traditional process of AlN ceramic substrate preparation methods (thin-film, thick-film, and direct bonded copper methods). The thin-film method requires precision instruments such as sputtering machines, but the equipment is expensive and the manufacturing cost is high. The direct bonded copper method requires a high temperature (approximately 1070 °C) to sinter the copper film onto the surface of the ceramic substrate. After this is finished, the conductive film must undergo some complicated process to obtain the products for both processes. Although the thick-film method is the easiest to undertake, it is limited in its process capability and cannot meet the development needs of the electronics industry in the future. Accordingly, this paper presents an investigation of the laser plated copper method to establish its advantages and disadvantages. This study compares traditional AlN metallisation with the laser radiation plated copper method, and discusses the application of three different methods, as follows: the selective chemical copper, selective electroless nickel, and electroless gold methods. These applications could achieve process simplification, precision design, easy production of three-dimensional extrusions, and green production processes. This research establishes and designs AlN metallisation using the failure mode and effect analysis (FMEA) model, by analysing possible causes and solutions in advance. The information herein obtained can be used as the reference for laser-enhanced AlN metallisation, to avoid potential problems and product damage during mass production.
KW - Aluminium nitride
KW - Ceramic substrate
KW - Direct bonded copper
KW - Electroless gold
KW - Electroless nickel
KW - Failure mode and effect analysis
KW - Laser plated copper
UR - http://www.scopus.com/inward/record.url?scp=85074160830&partnerID=8YFLogxK
U2 - 10.1016/j.microrel.2019.113508
DO - 10.1016/j.microrel.2019.113508
M3 - 期刊論文
AN - SCOPUS:85074160830
SN - 0026-2714
VL - 103
JO - Microelectronics Reliability
JF - Microelectronics Reliability
M1 - 113508
ER -