Development of New Low Melting Solder Alloys

Chih Hao Chen, Boon Ho Lee, Hsiang Chuan Chen, Chang Meng Wang, Albert T. Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations


In advanced 3D IC assembly, one of the key processes is to thin down the wafer for multiple-layer stacking vertically. Warpage is commonly seen in the IC chips due to the differences in coefficient of thermal expansion of the materials. The conventional peak temperatures for reflowing Sn-base Pb-free solders are above 230 °C. High temperature thermal processes would further induce severe warpage issues of the chips with thin wafers and cause failure and degrade the reliability. The development of new Pb-free alloys for low temperature assembly is important for the applications. In the previous years, Sn, In and Bi are the most common elements that are used for low temperature alloys. Setting the melting temperature at around 100 °C for the alloy is ideal for practical applications. The two alloys reported in this study show possible applications for the advanced packaging technology. Gallium has a melting temperature of 29.8 °C. Alloying Ga in Sn-Bi based solders could reduce the melting temperature to 128 °C when the composition is Sn62Bi32Ga6. The alloys reflowed on Cu substrates to investigate the microstructure. The microstructure of the cross-sectioned images and the electron probe micro-Analyzer (EPMA) analysis show that the initially formed intermetallic compound (IMC) is CuGa2. The IMCs became basin-Type due to fast dissolution of Cu into molten solders. The basin-Type IMC eventually became a continuous layer. The thermal aging tests at different temperatures yields the calculation of the activation energy, 2.82 kJ/mol. The relatively low value implies fast IMC growth and could be a possible candidate for the transient liquid phase bonding technique. Another low melting alloy, eutectic In-50wt% Bi (InBi), is developed for its melting temperature at around 95.7 °C. This study compares the properties with eutectic Sn-52wt% In (SnIn), melting point of 118 °C. Both alloys were reflowed on Cu substrates for cross-sectional microstructure investigation. The scanning electron microscopy (SEM) images revealed that the interfacial compounds were Cu6Sn5, Cu11In9 in eutectic Sn-In and In-Bi alloys, respectively. Shear tests were conducted on the samples with the alloys reflowed on OSP substrates. The results showed that InBi has almost twice the joint strength than the eutectic SnIn solders.

Original languageEnglish
Title of host publicationProceedings - ECTC 2016
Subtitle of host publication66th Electronic Components and Technology Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781509012039
StatePublished - 16 Aug 2016
Event66th IEEE Electronic Components and Technology Conference, ECTC 2016 - Las Vegas, United States
Duration: 31 May 20163 Jun 2016

Publication series

NameProceedings - Electronic Components and Technology Conference
ISSN (Print)0569-5503


Conference66th IEEE Electronic Components and Technology Conference, ECTC 2016
Country/TerritoryUnited States
CityLas Vegas


  • Ga
  • In-Bi
  • Low metling point solder


Dive into the research topics of 'Development of New Low Melting Solder Alloys'. Together they form a unique fingerprint.

Cite this