Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements

Yueh Chen Wang, Sheng Hsiang Wang, Jasper R. Lewis, Shuenn Chin Chang, Stephen M. Griffith

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Planetary boundary layer height (PBLH) is often used to characterize the structure of the lower atmosphere. Aerosol lidar, a ground-based remote sensing method, provides the vertical distribution of aerosol at a high temporal resolution observation data, from which, the PBL structure and the position of the PBL top can be comprehensively studied. PBLH determination with lidar data depends primarily on the characteristic turbulent motions in the atmosphere and the geophysical location. However, lidar determination of PBLH over densely populated subtropical locations has rarely been discussed; thus, developing retrieval techniques suitable to these areas is necessary. In this study, four PBLH determination methods (Gradient, δ–threshold, Haar wavelet transform, and hybrid image processing) are applied to estimate the PBLH from lidar observations over an urban area in East Asia, and one—the Gradient method—relied on potential temperature measurements from an unmanned aerial vehicle (UAV) flights to validate our results. Our results indicate that a combination of the gradient method and δ-threshold method can provide better results, in terms of diurnal pattern, than using either method individually. Furthermore, the Haar wavelet and the Hybrid image processing can detect the PBL development comparably well, but both methods are dependent on their initial conditions and optimized algorithm settings. In addition, the accompanying UAV observations are conclusively shown to have a high degree of efficacy for validating the lidar data. This research highlights that a combination of PBLH determination methods can better describe the PBLH evolution throughout a day in some cases, while in others less common determination methods are proving useful, and a suite of retrieval methods should still be explored for precisely mapping the PBL in densely populated subtropical areas.

Original languageEnglish
Article number200336
JournalAerosol and Air Quality Research
Issue number5
StatePublished - 2021


  • Micro-pulse lidar (MPL)
  • Planetary boundary layer (PBL)
  • Unmanned aerial vehicle (UAV)


Dive into the research topics of 'Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements'. Together they form a unique fingerprint.

Cite this