Design of telescopic nadir imager for geomorphology (TENGOO) and observation of surface reflectance by optical chromatic imager (OROCHI) for the Martian Moons Exploration (MMX)

Shingo Kameda, Masanobu Ozaki, Keigo Enya, Ryota Fuse, Toru Kouyama, Naoya Sakatani, Hidehiko Suzuki, Naoya Osada, Hiroki Kato, Hideaki Miyamoto, Atsushi Yamazaki, Tomoki Nakamura, Takaya Okamoto, Takahiro Ishimaru, Peng Hong, Ko Ishibashi, Takeshi Takashima, Ryoya Ishigami, Cheng Ling Kuo, Shinsuke AbeYuya Goda, Hajime Murao, Saori Fujishima, Tsubasa Aoyama, Keiji Hagiwara, Satoko Mizumoto, Noriko Tanaka, Kousuke Murakami, Miho Matsumoto, Kenji Tanaka, Hironobu Sakuta

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The JAXA’s Martian Moons Exploration (MMX) mission is planned to reveal the origin of Phobos and Deimos. It will remotely observe both moons and return a sample from Phobos. The nominal instruments include the TElescopic Nadir imager for GeOmOrphology (TENGOO) and Optical RadiOmeter composed of CHromatic Imagers (OROCHI). The scientific objective of TENGOO is to obtain the geomorphological features of Phobos and Deimos. The spatial resolution of TENGOO is 0.3 m at an altitude of 25 km in the quasi-satellite orbit. The scientific objective of OROCHI is to obtain material distribution using spectral mapping. OROCHI possesses seven wide-angle bandpass imagers without a filter wheel and one monochromatic imager dedicated to the observation during the landing phase. Using these two instruments, we plan to select landing sites and obtain information that supports the analysis of return samples. Graphical Abstract: [Figure not available: see fulltext.].

Original languageEnglish
Article number218
JournalEarth, Planets and Space
Volume73
Issue number1
DOIs
StatePublished - Dec 2021

Keywords

  • Deimos
  • Imager
  • MMX
  • Mars
  • OROCHI
  • Phobos
  • TENGOO

Fingerprint

Dive into the research topics of 'Design of telescopic nadir imager for geomorphology (TENGOO) and observation of surface reflectance by optical chromatic imager (OROCHI) for the Martian Moons Exploration (MMX)'. Together they form a unique fingerprint.

Cite this