Dense Adversarial Transfer Learning Based On Class-Invariance

Bach Tung Pham, Ting Yu Wang, Phuong Le Thi, Khai Thinh Nguyen, Yuan Shan Lee, Tzu Chiang Tai, Jia Ching Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work proposes the dense adversarial transfer learning based on class-invariance, which is a novel, unsupervised, conditional adversarial domain adaptation approach. The proposed framework concatenates feature maps from the last layer of each backbone's block to improve transfer learning; these features are weighted and densely connected to the features of each block along with the gradient-reversal layer. Classifiers are also added to the domain discriminators so that the network not only retains the classifying abilities when learning the domain-invariant features, but also has its domain adaptation abilities improved. In the experiment, the benchmark dataset Office-31 is used to compare the performance of similar existing frameworks. In three transfer tasks, the proposed method enhances the accuracy by approximately 3% to 5%, demonstrating the improvement provided by the proposed network towards unsupervised domain adaptation.

Original languageEnglish
Title of host publicationICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728163277
DOIs
StatePublished - 2023
Event48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece
Duration: 4 Jun 202310 Jun 2023

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2023-June
ISSN (Print)1520-6149

Conference

Conference48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Country/TerritoryGreece
CityRhodes Island
Period4/06/2310/06/23

Keywords

  • Domain adaption
  • adversarial-based transfer learning
  • deep learning
  • transfer learning

Fingerprint

Dive into the research topics of 'Dense Adversarial Transfer Learning Based On Class-Invariance'. Together they form a unique fingerprint.

Cite this