Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials

Pei Chun Wong, Pei Hua Tsai, Tsung Hsiung Li, Cheng Kung Cheng, J. S.C. Jang, J. C. Huang

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

MgZnCa-based alloys have great potential as implant materials due to their non-cytotoxicity, ease of degradation in the human body, and a low Young's modulus close to that of bone. However, there are few reports on their long-term degradation behavior and the mechanical properties resulting from degradation. This study thus aims to explore the long-term degradation behavior and mechanical strength of Mg60Zn35Ca5and Mg67Zn28Ca5bulk metallic glass (BMG) and its composites with Ti particles (BMGCs) before and after immersion in simulated body fluid (SBF). Rods of Mg60Zn35Ca5and Mg67Zn28Ca5BMG and their corresponding composites BMGCs have been prepared through an induction melting and injection casting method. Then, their degradation behavior, surface morphology, microstructure, mechanical properties, and biocompatibility have been systematically investigated. The results show that Mg60Zn35Ca5BMGC has the lowest degradation rate (0.26 mm/year) after 12 weeks of immersion. It has a compressive strength of 807 MPa initially and 154 MPa after 12 weeks of immersion. In this study, all samples are classed as slightly toxic based on the standard ISO 10993-5.

Original languageEnglish
Pages (from-to)914-920
Number of pages7
JournalJournal of Alloys and Compounds
Volume699
DOIs
StatePublished - 2017

Keywords

  • Biodegradable
  • Degradation behavior
  • Metallic glass
  • MgZnCa

Fingerprint

Dive into the research topics of 'Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials'. Together they form a unique fingerprint.

Cite this