Deformation behaviors of dip slopes considering the scale effect and their geological properties

Wen Chao Huang, Kun Che Li, Jheng Yu Hsieh, Meng Chia Weng, Wen Yi Hung

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

To clarify the scale effect of slope deformation, this study investigates the behaviors of dip slopes with various heights and geological properties using centrifuge and numerical modeling. Three types of physical and numerical models with different rock layer thicknesses and weak plane angles were constructed for analysis and validation. The models were subject to toe submersion to simulate the wetting deterioration condition. Based on the analysis results, the deformation, sliding, and debris accumulation of small slopes (a few meters high) may be insignificant. However, the deformation behaviors of higher slopes with the same angle (with a height of tens to a hundred meters) can be more severe and affect the whole slope, especially if the slope has a high weak plane angle with alternating thin rock layers. Some early warning signs, such as bulging-induced tension cracks close to the toe or the relative sliding of layers at the slope surface or crest, can produce more massive landslides or debris accumulation of the dip slopes, especially for high slopes.

Original languageEnglish
Pages (from-to)1605-1617
Number of pages13
JournalBulletin of Engineering Geology and the Environment
Volume79
Issue number3
DOIs
StatePublished - 1 Apr 2020

Keywords

  • Centrifuge test
  • Dip slope
  • Discrete element method (DEM)
  • Scale effect
  • Weak plane angle

Fingerprint

Dive into the research topics of 'Deformation behaviors of dip slopes considering the scale effect and their geological properties'. Together they form a unique fingerprint.

Cite this