TY - JOUR
T1 - Data cleaning issues in class imbalanced datasets
T2 - instance selection and missing values imputation for one-class classifiers
AU - Wang, Zhenyuan
AU - Tsai, Chih Fong
AU - Lin, Wei Chao
N1 - Publisher Copyright:
© 2021, Emerald Publishing Limited.
PY - 2021/10/11
Y1 - 2021/10/11
N2 - Purpose: Class imbalance learning, which exists in many domain problem datasets, is an important research topic in data mining and machine learning. One-class classification techniques, which aim to identify anomalies as the minority class from the normal data as the majority class, are one representative solution for class imbalanced datasets. Since one-class classifiers are trained using only normal data to create a decision boundary for later anomaly detection, the quality of the training set, i.e. the majority class, is one key factor that affects the performance of one-class classifiers. Design/methodology/approach: In this paper, we focus on two data cleaning or preprocessing methods to address class imbalanced datasets. The first method examines whether performing instance selection to remove some noisy data from the majority class can improve the performance of one-class classifiers. The second method combines instance selection and missing value imputation, where the latter is used to handle incomplete datasets that contain missing values. Findings: The experimental results are based on 44 class imbalanced datasets; three instance selection algorithms, including IB3, DROP3 and the GA, the CART decision tree for missing value imputation, and three one-class classifiers, which include OCSVM, IFOREST and LOF, show that if the instance selection algorithm is carefully chosen, performing this step could improve the quality of the training data, which makes one-class classifiers outperform the baselines without instance selection. Moreover, when class imbalanced datasets contain some missing values, combining missing value imputation and instance selection, regardless of which step is first performed, can maintain similar data quality as datasets without missing values. Originality/value: The novelty of this paper is to investigate the effect of performing instance selection on the performance of one-class classifiers, which has never been done before. Moreover, this study is the first attempt to consider the scenario of missing values that exist in the training set for training one-class classifiers. In this case, performing missing value imputation and instance selection with different orders are compared.
AB - Purpose: Class imbalance learning, which exists in many domain problem datasets, is an important research topic in data mining and machine learning. One-class classification techniques, which aim to identify anomalies as the minority class from the normal data as the majority class, are one representative solution for class imbalanced datasets. Since one-class classifiers are trained using only normal data to create a decision boundary for later anomaly detection, the quality of the training set, i.e. the majority class, is one key factor that affects the performance of one-class classifiers. Design/methodology/approach: In this paper, we focus on two data cleaning or preprocessing methods to address class imbalanced datasets. The first method examines whether performing instance selection to remove some noisy data from the majority class can improve the performance of one-class classifiers. The second method combines instance selection and missing value imputation, where the latter is used to handle incomplete datasets that contain missing values. Findings: The experimental results are based on 44 class imbalanced datasets; three instance selection algorithms, including IB3, DROP3 and the GA, the CART decision tree for missing value imputation, and three one-class classifiers, which include OCSVM, IFOREST and LOF, show that if the instance selection algorithm is carefully chosen, performing this step could improve the quality of the training data, which makes one-class classifiers outperform the baselines without instance selection. Moreover, when class imbalanced datasets contain some missing values, combining missing value imputation and instance selection, regardless of which step is first performed, can maintain similar data quality as datasets without missing values. Originality/value: The novelty of this paper is to investigate the effect of performing instance selection on the performance of one-class classifiers, which has never been done before. Moreover, this study is the first attempt to consider the scenario of missing values that exist in the training set for training one-class classifiers. In this case, performing missing value imputation and instance selection with different orders are compared.
KW - Class imbalance
KW - Data mining
KW - Instance selection
KW - Machine learning
KW - Missing value imputation
KW - One-class classifiers
UR - http://www.scopus.com/inward/record.url?scp=85106029684&partnerID=8YFLogxK
U2 - 10.1108/DTA-01-2021-0027
DO - 10.1108/DTA-01-2021-0027
M3 - 期刊論文
AN - SCOPUS:85106029684
SN - 2514-9288
VL - 55
SP - 771
EP - 787
JO - Data Technologies and Applications
JF - Data Technologies and Applications
IS - 5
ER -