Abstract
Many civil infrastructures are located near the confluence of two streams, where they may be subject to inundation by high flows from either stream or both. These infrastructures, such as highway bridges, are designed to meet specified performance objectives for floods of a specified return period (e.g. the 100 year flood). Because the flooding of structures on one stream can be affected by high flows on the other stream, it is important to know the relationship between the coincident exceedence probabilities on the confluent stream pair in many hydrological engineering practices. Currently, the National Flood Frequency Program (NFF), which was developed by the US Geological Survey (USGS) and based on regional analysis, is probably the most popular model for ungauged site flood estimation and could be employed to estimate flood probabilities at the confluence points. The need for improved infrastructure design at such sites has motivated a renewed interest in the development of more rigorous joint probability distributions of the coincident flows. To accomplish this, a practical procedure is needed to determine the crucial bivariate distributions of design flows at stream confluences. In the past, the copula method provided a way to construct multivariate distribution functions. This paper aims to develop the Copula-based Flood Frequency (COFF) method at the confluence points with any type of marginal distributions via the use of Archimedean copulas and dependent parameters. The practical implementation was assessed and tested against the standard NFF approach by a case study in Iowa's Des Moines River. Monte Carlo simulations proved the success of the generalized copula-based joint distribution algorithm.
Original language | English |
---|---|
Pages (from-to) | 1471-1486 |
Number of pages | 16 |
Journal | Hydrological Processes |
Volume | 23 |
Issue number | 10 |
DOIs | |
State | Published - 15 May 2009 |
Keywords
- Confluence point
- Copula
- Flood frequency analysis
- Hydrological process
- Joint probability
- Monte Carlo simulation