Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor

Nurlia P. Sari, Dipak Dutta, Anif Jamaluddin, Jeng Kuei Chang, Ching Yuan Su

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Supercapacitors constructed from three-dimensional (3D) graphene electrodes with high ion-accessible surface area and durable mechanical flexibility have great potential for wearable devices. For the development of a highly efficient graphene electrode for electrical double layer capacitors (EDLCs), proper control over not only the specific surface area but also the type of pore (macro-, meso- and micro-porous networks) adapted for an appropriate type of electrolyte is crucial to ensure an ideal performance in terms of both energy density and power delivery rate. However, there is still a lack of technology to create graphene structures that combine macro-, meso- and micro-pores by a one-step and facile method. In addition, the ion/electron transport of a solid state electrolyte among such multimodal pore structures is not fully investigated. Here, we report a novel cost-effective technique of concentration dependent self-assembly of electrochemically exfoliated graphene (EC-graphene) to obtain a 3D architecture with controllable macropores (0.39-4.99 μm) and multimodal hierarchical meso- and micro-pores. The better performance of the 3D architecture is obtained due to its optimum micron-sized macropore diameter (∼5 μm) that serves as an ion buffering reservoir, followed by facile ion diffusion kinetics through the well-modulated combination of macro-, meso- and micro-pores. The binder and conductive carbon additive free supercapacitor constructed from the 3D graphene electrode exhibited a specific capacitance of 45.40 F g-1 (6 M KOH) and 23.89 F g-1 (1 M H2SO4 gel electrolyte). A capacitance retention of above 90% (up to 180° folding angle) after 50 bending-relaxing cycles is obtained, implying the superior durability of the device and the worthiness of the synthesis procedure. The method reported here may pave the way for the development of an environment friendly, large scale producible and controlled porous graphene-based architecture for the high performance next generation flexible, all-solid-state and binder-free energy storage devices.

Original languageEnglish
Pages (from-to)30381-30392
Number of pages12
JournalPhysical Chemistry Chemical Physics
Issue number45
StatePublished - 2017


Dive into the research topics of 'Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor'. Together they form a unique fingerprint.

Cite this