Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A-Train observations

J. L.F. Li, Wei Liang Lee, Duane Waliser, Yi Hui Wang, Jia Yuh Yu, Xianan Jiang, Tristan L’Ecuyer, Yi Chun Chen, Terry Kubar, Eric Fetzer, M. Mahakur

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

This study characterizes biases in water vapor, dynamics, shortwave (SW) and longwave (LW) radiative properties in contemporary global climate models (GCMs) against observations over tropical Pacific Ocean. The observations are based on Atmospheric Infrared Sounder for water vapor, CloudSat 2B-FLXHR-LIDAR for LW and SW radiative heating profiles, and radiative flux from Clouds and the Earth’s Radiant Energy System products. The model radiative heating profiles are adopted from the coupled and uncoupled National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) and joint Year of Tropical Convection (YOTC)/Madden Julian Oscillation (MJO) Task Force-Global Energy and Water Cycle Experiment Atmospheric System Studies (GASS) Multi-Model Physical Processes Experiment (YOTC-GASS). The results from the model evaluation for YOTC-GASS and NCAR CESM1 demonstrate a number of systematic radiative biases. These biases include excessive outgoing LW radiation and excessive SW surface radiative fluxes, in conjunction with a radiatively unstable atmosphere with excessive LW cooling in the upper troposphere over convectively active areas, such as the Intertropical Convergence Zone/South Pacific Convergence Zone (ITCZ/SPCZ) and warm pool. Using sensitivity experiments with the NCAR-uncoupled/NCAR-coupled CESM1, we infer that these biases partly result from the interactions between falling snow and radiation that are missing in most contemporary GCMs (e.g., YOTC-GASS, Coupled Model Intercomparison Project 3 (CMIP)3, and Atmospheric Model Intercomparison Project 5 (AMIP5)/CMIP5). A number of biases in the YOTC-GASS model simulations are consistent with model biases in CMIP3, AMIP5/CMIP5, and NCAR-uncoupled/NCAR-coupled model simulation without snow-radiation interactions. These include excessive upper level convection and low level downward motion with outflow from ITCZ/SPCZ. This generates weaker low-level trade winds and excessive precipitation in the Central Pacific Trade wind regions. The excessive LW radiative cooling in NCAR-coupled/NCAR-uncoupled GCM simulations is reduced by 10-20% with snow-radiative effects considered.

Original languageEnglish
Pages (from-to)1621-1636
Number of pages16
JournalJournal of Geophysical Research E: Planets
Volume121
Issue number4
DOIs
StatePublished - 27 Feb 2016

Fingerprint

Dive into the research topics of 'Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A-Train observations'. Together they form a unique fingerprint.

Cite this