Abstract
Nanometer-size conducting structures are of great interest in view of fundamental issues and potential applications. We explore the inclusion chemistry of conjugated polymers and graphite-like materials as a means to create such structures. Novel mesoporous materials with pore diameters in the 3 nm range (MCM-41) are used as hosts. Monomer molecules are introduced via vapor or solution transfer and polymerized either by included or external reagents. The properties of the conjugated systems are studied while encapsulated or after dissolution of the host. In the case of polyaniline formed on oxidation of aniline with persulfate, microwave absorption shows the presence of conducting filaments in the host channels. The above systems are compared with graphite-type material encapsulated in MCM-41 by first forming a precursor polymer such as polyacrylonitrile that is pyrolyzed at 500-800°C. These polymer chains are the first nanometer-size conducting filaments stabilized in a well-defined channel host.
Original language | English |
---|---|
Pages (from-to) | 2269-2276 |
Number of pages | 8 |
Journal | Studies in Surface Science and Catalysis |
Volume | 84 |
Issue number | C |
DOIs | |
State | Published - 1 Jan 1994 |